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1. Introduction

A great deal of attention has been devoted to study the growth and collapse of bubbles in viscoelastic
media. The interest has been motivated by experimental works where it has been shown that cavitation
may be reduced or even suppressed in polymeric water solutions (see Brujan et al. (2004) and references
therein). Correspondingly, numerous theoretical analyses have been devoted to study the collapse of spherical
bubbles in viscoelastic fluids, induced by an imposed pressure difference between the internal gas pressure, and
the external pressure of the continuous phase. Revisions of the empirical as well as the theoretical works on the
subject may be found in the book of Levitskiy and Shulman (1995) and in Brujan (1999), where the problem is
analyzed taking into account the effects of the liquid compressibility. Pioneer theoretical studies on voids Fog-
ler and Goddard (1970), as well as on gas bubbles Tanasawa and Yang (1970), showed that oscillatory behav-
ior is enhanced by the elasticity of the fluid, so that in non-Newtonian media, it must be expected that the
collapse occurs by a sequence of successive rebounds damped by viscosity. Zana and Leal (1975) investigated
the diffusion-induced collapse of gas bubbles in viscoelastic liquids, and found significant differences between
the Newtonian case and the viscoelastic case for both the collapse rate and the internal bubble pressure. Anal-
ogous results have been obtained in subsequent works, (Kim, 1994; Brujan, 1999), where it has been also
claimed that in high elastic non-Newtonian fluids, the collapse process becomes close to the one corresponding
to an inviscid fluid. Nevertheless, these theoretical predictions have been not fully confirmed in experiments.
On the contrary, it should be concluded from empirical works, that the dynamics of single bubbles is unaf-
fected by the rheological properties of the host fluid, except for in the proximity of rigid boundaries (Chahine
and Fruman, 1979; Brujan et al., 1996, 2004), or in the case of non-spherical bubbles, Hara and Schowalter
(1984). Furthermore, it has been also shown that the bubble dynamics experimentally observed in shear thin-
ning polymeric solutions is more suitably described ignoring the non-Newtonian effects, and considering the
infinity-shear viscosity as the viscosity of the polymer solution Brujan et al. (1996). Therefore, it is not clear at
present if, in an unbounded fluid, the rheological nature of the host fluid has or not, an explicit influence on
the individual bubble behavior.

In this note, the collapse of a spherical gas bubble as well as a spherical empty cavity in a viscoelastic liquid
are revised by considering for the extra stress tensor a differential constitutive equation with an interpolated
time derivative. This rheological model here adopted is adequate to the study of bubble dynamics because, as
shown by Shulman and Levitskiy (1987), Levitskiy and Shulman (1995) the generalized Rayleigh—Plesset
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equation which is usually in the viscoelastic case an integrodifferential equation, may be reduced to an ordin-
ary differential equation. This procedure has been used by Gibaudullin et al. (2001) to study shock waves in
non-Newtonian bubbly liquids and more recently by Jiménez-Fernandez and Crespo (2005) to analyze acous-
tically driven oscillations of bubbles in viscoelastic fluids. The full governing system has been numerically
solved and the differences in behavior between a gas bubble and an empty cavity are discussed. It is shown
that under the action of elastic normal stresses, gas bubbles with small gas content and empty cavities may
have a similar behavior in the early phases of the collapse.

Previous theoretical predictions have been confirmed. Furthermore, it has been found that as the fluid elas-
ticity of a polymeric solution is increased, the elastic effects and the viscous effects due to polymer contribution
cancel out, so that the collapse process in the polymeric solution becomes close to the collapse process in a
Newtonian fluid, with a viscosity equal to the viscosity of the Newtonian solvent.

Thus, this opposite and simultaneous action of fluid elasticity and viscous damping may provide a first
explanation about the small differences experimentally observed between the bubble collapse processes in
Newtonian fluids and viscoelastic fluids.

2. Formulation

Consider a spherical gas-vapor bubble of radius R immersed in a viscoelastic fluid of density p. The dynam-
ics of the bubble is governed by the Rayleigh—Plesset equation which may be written in the form:

I 20 * T — Top
RR+ZR*) =p, —po+p,——+2 = dr 1
p< 5 > Py~ PP /R " (1)
where the dot denotes time differentiation, p, is the gas bubble pressure, p, the pressure of the liquid far away
from the bubble, p, the vapor pressure, o the coefficient of surface tension and t,,, 799 the components of the
extra stress tensor . In the following it will be assumed that the extra stress tensor z is given by a constitutive
equation of differential type in the form:

t=17+17 (2)
where
v =2n.e (3)

is the contribution to the stress of the Newtonian solvent and t* is the polymer contribution which satisfies the
equation:
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In the above expressions, 1, is the solvent viscosity, e is the rate of strain tensor defined as: e = 1 (Vv + (vv)h)
where Vv is the velocity gradient, 25 = & + yV7 is the convective derivative, / is the stress relaxation time and

1, is the polymer contribution to the shear viscosity of the solution: # = 1, + 7,,. Eq. (4) may be also written in
an alternative form by introducing a retardation time defined as A’ = A(n,/5). The term in large brackets in
expression (4) is an invariant derivative for any value of « in the interval: —1 < a < 1 Joseph (1990). For
a =1, the Eq. (4) is the Oldroyd-B model, a rheological model which predicts a constant shear viscosity
and strain thickening of the extensional viscosity. For intermediate values of « in the interval 0 < a <1,
Eq. (4) leads to models which exhibit a shear thinning viscosity. Different constitutive equations, defined by
different values of the parameter a have been used in the past for this problem. The case « = 0 was considered
by Tanasawa and Yang (1970), and by Brujan (1999), the case a =1 by Ting (1975) and finally the case
a=1 and n, =0, (Upper Convected Maxwell model) by Kim (1994). All these models, convert the Rayleigh
Plesset Eq. (1) into an integrodifferential equation, after a transformation to Lagrangian coordinates.
However, for a =1 and a = 1/2, Egs. (1)-(4) may be reduced to the following differential system (Levitskiy
and Shulman, 1995; Jiménez-Fernandez and Crespo, 2005):
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where S,(1) = Sl(,” + (2a — l)SfU2> corresponds to the integral on the normal stresses difference in (1). Thus,
these particular values of the parameter a lead to a more simpler governing initial value problem which
may be integrated by means of standard numerical methods. Computation times are therefore reduced and
convergence difficulties in the neighbourhood of the collapse point previously reported: Ting (1975), Kim
(1994), Brujan (1999), may be also avoided.

In the following, it will be assumed that the surface tension as well as the vapor pressure are negligible. It
will be also considered that the gas bubble pressure is given by a polytropic transformation: p, = po (Ro/R)*",
where py and R, are respectively, the initial gas bubble pressure and the initial bubble radius.

The above equations are written in dimensionless form by means of the following scales: length: R, time:
t.=Ry/ \/’%, and pressure: p. = p... With these scales, Egs. (5)—(7) become
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where the star (which will be suppressed hereafter) denotes dimensionless quantities. Re = pR/t.n, is the
Reynolds number, De = A/, is the Deborah number, ¢ =,/ and ¢ = po/poc.

3. Results and conclusions

System (8)—(10) has been integrated with the initial conditions: R(0) = 1,R(0) = SI(,”(O) = Sf)(O) = 0. So, it
is implicitly assumed in the model that the bubble, at rest at the pressure pg for times prior to zero, is out from
equilibrium at the initial instant when the external pressure is suddenly increased to p.,. When ¢ = 0, (empty
cavity) the strain rate R/R and correspondingly the normal stresses S, tend to constant values for large times,
so that the bubble radius tends asymptotically to zero. On the contrary, if ¢ > 0, (gas bubble) the normal stresses
S, tend to zero, so that the bubble travels towards a new equilibrium state with bubble radius R = R,= g%
For large times, there is therefore a different behavior for the two cases ¢ = 0 and ¢ > 0. However, in the early
phase of the collapse the numerical results obtained show a very similar behavior in the cases ¢ = 0 and ¢ > 0 for
an Olroyd-B model when ¢ is small, as is illustrated in the Fig. 1. In this figure, the influence of the pressure ratio
g on the amplitude of the bubble radius at the first rebound, for the system: Re = 10, De = 1, ¢ = 0.2, is shown.
Note that, quantitative differences are found for an interpolated model whereas for an Oldroyd-B model a very
similar behavior is indeed observed between a void and a gas bubble if ¢ < 0.001. In fact, in the early phases of
the collapse the elastic normal stresses dominate over the compressive stresses generated by the gas inside the
bubble as is illustrated in Fig. 2. In this figure, the difference of normal stresses S, for both, a gas bubble
(¢ =10"% and an empty cavity (¢ = 0) as well as the internal bubble pressure ¢/R(7)*" versus time, are plot-
ted for an Oldroyd-B fluid with De =0.5, Re =2, and ¢ =0.2. As it may be observed, for times prior to
t = 3, the difference of normal stresses S, takes the same values for ¢ =0 and g = 10~*, whereas the gas bubble
pressure is nearly zero. Consequently, the corresponding curves for R(¢), which have been also plotted, are in
both cases identical in this phase of the collapse. For larger times the gas bubble has reduced its radius suffi-
ciently for the internal pressure begin to take significant values so that the ratio ¢/R>’(¢) grows to unity, as
the bubble radius tends to the equilibrium value Ry Simultaneously, S, tends to zero. By contrast, in an empty
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Fig. 1. Bubble radius at the first rebound versus the pressure ratio ¢ = po/p. for an interpolated model (dashed line) and an Oldroyd-B
fluid (solid line). Re =10, De =1, ¢ =0.2.
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Fig. 2. The integrated difference of normal stresses S, and the bubble radii versus time for an empty cavity (solid lines) and a gas bubble
with ¢ = 107* (dashed lines) in a Olroyd-B fluid: De = 0.5, Re =2, ¢ = 0.2. The dotted line is the dimensionless gas bubble pressure:
q/R()%.

cavity S, tends to a constant value as the bubble radius tends to zero. This theoretical result, supports previous
predictions on the collapse of empty cavities, namely, that voids which collapse catastrophically in Newtonian
fluids, experience an oscillatory motion in viscoelastic fluids.

The net influence of the fluid elasticity, which is here quantified by the Deborah number, is shown in Fig. 3,
where the maximal amplitude (that is the amplitude of the first rebound) as function of De is plotted for fixed
Re=10,g=10"*¢=0,0.2,0.5 and a = 1/2, 1 respectively. As it may be noted, this amplitude tends to zero
as De tends to zero. Therefore, it is confirmed that for these values of Re and ¢, the collapse will be mono-
tonous in a Newtonian fluid and oscillatory in a viscoelastic fluid. As expected, the amplitude increases with
De but tends towards a constant value for moderate to large values of this parameter. Thus, if ¢ is very small or
if € vanishes (models like Maxwell) an inviscid behavior is observed. This is a result predicted in previous
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Fig. 3. Amplitude of the first rebound versus Deborah number for ¢ = 107, Re = 10 and ¢ = 0, 0.2, 0.5 from top to bottom, respectively.
Dashed lines (a = 1). Dark lines (¢ = 1/2). Horizontal lines show the value of the amplitude in the Newtonian solvent.

works (Kim, 1994; Brujan, 1999) which should be considered as a theoretical prediction characteristic of mod-
els of Maxwell type. For non-vanishing values of ¢, the amplitudes tend towards asymptotic values which are
those corresponding to a Newtonian fluid if the Reynolds number is increased from Re = 10 to Re;, = 10/e.
These asymptotlc behaV1ors correspond to the solutions of the system (8)—(10) for S p =0, 1. e., the lim-
iting values of Sp and S for De >> 1, when Re is the order of the unity. For arbltrary Re, the asymptotic
behavior for S,(1) = + (2a — 1)S© B for large De, may be determined from the Egs. (9) and (10) and is given
by the following expressmn

21—¢) (34+2a 7—6a 2a-—1 1
DeRe \ 4 4R% R ) T

S,=— 1 (11)
Thus, if the Reynolds number is the order of the unity or larger, as the Deborah number is increased, the influ-
ence of the polymeric normal stresses difference S, is reduced, so that the collapse process in the polymeric
solution is controlled by the viscosity of the Newtonian solvent, which becomes the unique rheological param-
eter involved. It must be remarked that, according to the rheological model considered in the present analysis
for shear-thinning fluids (a = 1/2), the viscosity of the solvent is just the infinity-shear viscosity of the solution.
This theoretical trend is therefore in good qualitative agreement with the experimental observations of Brujan
et al. (1996) for aqueous polymeric solutions.
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